

Hash Table Based Word Searching Algorithm

Sanket Jain, Manish Pandey

Computer Science and Engineering Department
Maulana Azad National Institute of Technology

Bhopal, India

Abstract-Word searching techniques are used to find all the
appearances of the word in the given text. For offline or non-
changeable text, it is carried out in two phases: preprocessing
phase and searching phase. The two main criteria for word
searching algorithms are search time and space overhead.
The existing algorithms consume more time and space. To
improve the efficiency of the proposed algorithm, SDBM hash
function with a heuristic is adopted. By implementing the
technique, search time is reduced proportionally to constant
to find single pattern.
Keywords- String matching; hashing; SDBM; heuristic; word
searching.

I. INTRODUCTION

Finding the position where a word (or pattern) first
appears in the given string is called Word Searching
(Pattern Searching). In word searching, we check for
presence of word ‘W’ in the given offline text ‘T’. Many
algorithms have been propounded for solving the word
searching problem like Word Searching Algorithm (WSA)
[1], Modified Word Searching Algorithm (MWSA) [2] etc.
Search time and space overhead of these algorithms are
high.

These issues motivate the implementation of a new idea
to improve the overall performance of the searching
algorithm.

An algorithm is a sequence of instructions that act on
some input data to produce some output in a finite number
of steps. It must be able to solve the problem in an efficient
way. Hashing schemes generate the key to identify each
word. Hash functions are used to generate unique key. A
hash function is any well-defined procedure or
mathematical function that converts a large, possibly
variable amount of data into small datum that may serve as
an index to an array. A hash table is a generalization of the
simpler notion of an ordinary array. Directly addressing
into an ordinary array makes effective use of our ability to
examine an arbitrary position in an array in O(1) time[5].
SDBM hash function with a heuristic is used in the
proposed algorithm. SDBM has very less chance of a
collision, even in a very large text.

This paper is organized as follows: Section 2 describes
related word searching algorithms. Section 3 describes
proposed algorithm and implementation of the proposed
algorithm. Section 4 describes the simulation and result
analysis. Finally sections 5 conclude the paper.

II. RELATED WORK
In [1] Word Searching Algorithm (WSA) is

propounded. According to WSA algorithm, the offline text
splits into ‘n’ equal parts depending on the size of the text.

A table is constructed for each part having two columns;
one is for length and second is for starting position of the
word. The length is taken as a key for searching.

In [2] Modified Word Searching Algorithm (MWSA) is
propounded. According to MWSA, the offline text splits
into ‘n’ equal parts and two tables are created for each
splinted part. First table has two columns; length and
starting position and second table also has two columns;
length and hash value. The hash value is the key for
searching.

III. HASH TABLE BASED WORD SEARCHING

ALGORITHM (HTWSA)

This section describes the idea and implementation of
proposed algorithm: Hash Table Based Word Searching
Algorithm (HTWSA). In HTWSA, it is predicated that text
is offline. HTWSA algorithm works in two phases:
Preprocessing phase and Searching phase.

a. Preprocessing Phase

The whole text is read to get the starting position of
each word. While reading starting position, hash values of
words are computed. Starting positions of words are stored
at respective hashed index slot of hash table HT (multiple
small size hash tables can be used, if the text is very large).
A heuristic SDBM hash function based on bit shifting is
used to compute the hash value ‘h’ of the words in text ‘T’
and word ‘W’. In SDBM hash function, the hash value ‘h’
is computed as follows:

h = ch + (h<<6) + (h<<16) - h

Where ch is the ASCII value of each character in the
word ‘W’, ‘h’ is initialized as zero, “<<” is a bitwise left
shift operator. The SDBM is a standard hash function which
has very less chances of collisions, even in a very large text.
The SDBM implementation is based on an algorithm by
P.A. Larson known as “Dynamic Hashing” [4]. A heuristic
of folding is used to limit the size of the key. Algorithm1
shows the preprocessing phase.

Algorithm1 explains the preprocessing phase of the
algorithm

Algorithm1 Preprocessing Phase
1. Algorithm pre_pro (offline text T)

2. {
3. insert_(T)
4. for i := 0 to n do
5. {
6. h:=H_SDBM_fn(wi);
7. HT[h]= start_ptn (wi);
8. }
9. }

Sanket Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4385 - 4388

4385

b. Searching Phase

In pre-processing phase algorithm stores the starting
positions at respective hashed index slot. If same hash
value is found then starting positions are stored in same
slot separated by a special symbol. In searching phase, a
word ‘W’ is inserted and its hash value ‘h’ is computed
using the heuristic SDBM hash function. Starting position
is extracted from respected hashed index slot of hash table;
then through starting position of word, character
comparison is started. If complete match occurs, the
occurrence of word ‘W’ in text ‘T’ is reported.

A word may exist more than once in the text. This can
be handled while reading the text. The starting position of
the same pattern is stored in the same slot of hash table. If
the starting position is found more than once in same slot
then the comparison is done for each starting position of
the word in the text. If hash value of the word is not found
then “Word not found” is reported. Algorithm2 explains
the searching phase of HTWSA algorithm.

Algorithm2 Searching Phase

1. Algorithm Searching_ (Word W)
2. {
3. h:=H_SDBM_fn(W);
4. y:=HT[h];
5. if(y!=0) then
6. write(“Word Found”);
7. else write(“Word not found”);
8. }

Both phases are explained by a flow diagram in fig.-1.

c. Heuristic SDBM Hash Function

In HTWSA, key distribution is used for every word in
the text. For key distribution, SDBM hash function with a
heuristic of additive folding is used. SDBM hash function
has very less chance of collision, even in a very large text
[3][4].

SDBM hash function is based on bit shifting. In SDBM
hash function the hash value H is computed as follows:

H = (H<<6) + (H<<16) - H + ch

Where ch is the ASCII value of each character in the
word w, H is initialized as zero, “<<” is a bitwise left shift
operator.

The SDBM hash function has a good overall
distribution for many different data sets. It works well in
situations where there is a high variance in the MSBs of the
elements in a data set. It was found to do well in scrambling
bits, causing better distribution of the keys and fewer splits.
It also happens to be a good general hashing function with
good distribution. [2]

The SDBM implementation is based on an algorithm by
P.A. Larson known as “Dynamic Hashing” [4]. A heuristic
of additive folding is used to limit the size of the key.
Algorithm3 shows the heuristic SDBM hash function.

Algorithm3 Heuristic SDBM Hash function

1. Algorithm H_SDBM_fn ()
2. sdbm_hash (input : address of key)
3. {
4. while (c != count) do
5. {
6. h=(*key++) +(h<<6)+(h<<16)-

h;
7. count := count+1;
8. }
9. Additive_hrstc(h);
10. return key;
11. }

Fig-1 Flow diagram of HTWSA

YE

NO

NO

YE

Start

Create an HashTable

Read the text T and Fill
Table at respective hashed

indices

Enter Word W
And compute hash value

Not
Found.

Extract next starting
position

Is hashed
index slot
empty?

Is it last
starting

position?

Compare word using
Starting Position

Is complete
match occur?

Occurrence of the Word
is reported.

P
re

pr
oc

es
si

ng
 P

ha
se

S

ea
rc

hi
ng

 P
ha

se

Not found.

NO

YE

Sanket Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4385 - 4388

4386

IV. SIMULATION AND RESULTS

a. Simulation

The next paragraph is taken as an example to simulate
the HTWSA algorithm:

“Wireless sensor network have emerged as an
important application of the ad hoc networks paradigm like
monitoring physical environment and these sensor
networks have limitations of system resources like battery
power communication range and processing capability.”

Starting positions corresponding to this paragraph are
as follows:

Wireless sensor network have emerged as an important
application of

1 10 17 25 30 38 41 44 54 66
The ad hoc networks paradigm like monitoring

physical environment and
69 73 76 80 89 98 103 114 123 135
These sensor networks have limitations of system

resources like battery
137 143 150 159 164 176 179 186 196 201
Power communication range and processing capability
209 215 229 235 239 250
In pre-processing phase of simulation hash values of

each word are computed using heuristic SDBM hash
function and starting positions of each word are stored at
respective hashed index slot. In this example, Additive
folding is applied twice to make index smaller and easy
understanding. The table below shows the hashed index
and starting position of words:

Table1. Hashed Index and Starting Position

Hashed Index Starting Position

002
109
122
136
150
202
203
315
329
339
344
406
421
436
565
596
649
666
698
706
744
767
858
873
879
890
919
922
969

186
250
30
164

135#235
179
201
229
73
41
38
215
123
137
1

10#143
44
54

25#159
80#150
66#176

239
76

98#103#196
209
17
69
89
114

In the second phase of simulation, a word “sensor” is
taken to search in the text. The hash value of the word ‘W’
is computed by using the heuristic SDBM hash function.
As the hash value of “sensor” is calculated as 596; the
pointer goes to HT[596] and extract the starting position to
match the word. If the word is matched completely,
positive output is displayed otherwise negative output is
displayed.

Case I. If we have same word more than once then in
preprocessing phase the starting position of same word will
be saved in the same hashed index slot separated by a
special symbol as shown in Table1. In Table1, Hashed
index 596 has two different starting positions 10 and 143
but saved at the same slot. If word ‘W’ does not match
with the word at the current starting position then the
pointer will be moved to next starting position in the same
slot.

Case II. The number of comparisons is counted as the
pointer moves to the next starting positions for the same
hash value. If the word ‘W’ is not present in the text ‘T’
then the number of comparisons is zero.

b. Comparative Results

As a comparative illustration among WSA, MWSA and
the proposed algorithm HTWSA, the pointer
movement(character comparison) is taken as a parameter.
Table2 shows the output results for the pattern “sensor” and
“networks”. The results show that how much comparison is
done for given patterns.

For the pattern “sensor” which has hashed index 596,
only 1 comparison has been taken in HTWSA algorithm
for the first search, 5 comparisons have been done in
MWSA algorithm and 7 comparisons have been done in
the WSA algorithm for the first search. In full text 2
comparisons, 18 comparisons and 26 comparisons have
been done in HTWSA algorithm, MWSA algorithm and
WSA algorithm respectively.

Table2.Comparative results for number of comparisons

Algorithm comparison based on word comparison

Pattern Algorithms
Number of comparisons

First pattern
comparison

Full patterns
comparison

“sensor”

WSA Algorithm 7 26
MWSA Algorithm 5 18

HTWSA
Algorithm

1 2

“networks”

WSA Algorithm 18 37
MWSA Algorithm 7 13

HTWSA
Algorithm

1 2

Fig-2 Graph for number of comparisons

Sanket Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4385 - 4388

4387

c. Complexity Analysis

In the pre-processing phase of HTWSA, reading the
text will take complexity of O(n), which execute only once
in the offline text. In searching phase, there is no need of
sorting the list or no need of binary search. If the number
of hash-table slots is atleast proportional to the number of
elements in the table, we have n = O(m) and, consequently,
a = n/m = O(m)/m =O(1). Thus, searching takes constant
time on average. Table3 shows the comparison of the
complexities of both phases in WSA, MWSA and HTWSA
algorithm. In WSA algorithm, merge sort is used for
sorting the tables and brute force search is used in
searching phase[1]. In MWSA algorithm, Insertion sort is
used for sorting and binary search is used in searching
phase[2].

Table3. Complexity Analysis

S.No.

Complexity Analysis of algorithms

Name of
algorithm

Phase Technique Complexity

1

Word
Searching
Algorithm

(ESPS)

Preprocessing
phase

Read the
text

O(n)

Merge
sort

O(nlog2n)

Searching
phase

Brute
force

manner

O((n-
m+1)*m)

2 Modified

Word
Searching
Algorithm
(MWSA)

Preprocessing

phase

Read the
text

O(n)

Insertion
sort

O(n2)

Searching
phase

Binary
search

O(log2n)

3

Hash
Table
Based
Word

Searching
Algorithm
(HTWSA)

Preprocessing
phase

Read the
text

O(n)

Searching

phase

Hashed
Index
Array

O(constant)

V. CONCLUSIONS

This paper has presented the new algorithm named as
“Hash Table Based Word Searching Algorithm (HTWSA)”
for word searching problems. Decreasing the searching
time is the main aspect of word searching algorithm. The
main advantage of this algorithm is excluding the search
for the text which is not needed or not present in the text.
For future work, this algorithm can be used in text editors.
Filling the cells of the array as soon as finishing writing the
text will reduce the time of pre-processing and the
algorithm is ready to process at any time.

VI. REFERENCES
[1] Ibrahiem M. M. Emary and Mohammed S. M. Jaber, “A

New Approach for Solving String Matching Problem
through Splitting the Unchangeable Text”, World Applied
Sciences Journal 4 (5): 626-633, 2008.

[2] Bharat Singh, Ishadutta Yadav, Suneeta Agarwal, Rajesh
Prasad, “An Efficient Word Searching Algorithm through
Splitting and Hashing the Offline Text”, artcom, pp.387-389,
2009 International Conference on Advances in Recent
Technologies in Communication and Computing, 2009.

[3] R. J. Enbody and H. C. Du, “Dynamic Hashing Schemes”,
ACM Computing Surveys, vol. 20, no. 2, 85-113, 1988.

[4] P. A. Larson, “Dynamic Hashing”, BIT, vol. 18, 184-201,
1978.

[5] Thomas H.Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clittord Stein, “An Introduction To Algorithms”,
McGraw-Hill Book Publication, First Edition,1990.

[6] R. S. Boyer, and J. S. Moore, “A fast string-searching
algorithm”, Communication of ACM, 20(10), pp. 762-772,
1977.

[7] www.encyclopedia.com

Sanket Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4385 - 4388

4388

